233 research outputs found

    Towards achieving low background levels in routine dating by liquid scintillation spectrometry

    Get PDF
    International radiocarbon intercalibration studies have revealed that radiometric laboratories using liquid scintillation (LS) spectrometry of benzene reported, on average, younger ages for near-background standards than either gas proportional counter (GPC) or accelerator mass spectrometry (AMS) laboratories. These studies suggested that the younger LS ages are probably related to the use of spectrophotometric benzene as a background standard. An analysis of successive 110-ka subfossil wood (Airedale Reef Ancient Wood: ARAW) standards shows that vacuum line memory effects occur in LS spectrometry and, consequently, must be corrected to obtain accurate ¹⁴C dates. ARAW standards, measured at monthly intervals in the Waikato laboratory, are used to provide blank corrections for both research and routine dating applications. The strong correlation between the ARAW Δ¹⁴C data and the sample activities that preceded the standards may provide an opportunity to obtain sample-specific blank corrections. Lithium carbide synthesis is likely to prove a source of contamination. This work suggests that reproducible background levels for routine dating of less than 0.1 pMC (55 ka ¹⁴C yr) are achievable

    Evidence for late polynesian colonization of New Zealand: University of Waikato radiocarbon measurements

    Get PDF
    We present radiocarbon determinations for 271 New Zealand archaeological samples measured at the University of Waikato Radiocarbon Dating Laboratory between 1975 and 1995. A discard protocol is applied to the series and the list culled to winnow the acceptable dates from those that may incorporate error. None of the 221 acceptable ¹⁴C determinations older than 600 BP (in the case of terrestrial samples) or 930 BP (in the case of marine and estuarine shell) extends beyond cal AD 1250. This conclusion supports the short chronology model of New Zealand prehistory presented by Anderson (1991)

    Age of the Rotoehu Ash. Comment.

    Get PDF
    Suggests that the article by Whitehead & Ditchburn (1994), although presenting useful new data on 230Th/232Th analyses, is flawed and misleading in suggesting that the Rotoiti Tephra is considerably younger than c. 50 ka

    Parent materials of Yellow-brown loams in the Waikato-Coromandel district.

    Get PDF
    The yellow-brown loams of the Waikato-Coromandel region are derived from weathered airfall volcanic materials. These materials may be either direct airfall deposits, or erosion products of these deposits, described as reworked ash in some publications. In the erosion products small amounts of other rocks may be included in the parent materials, and these additions may modify to a slight degree the chemical and physical properties of the soil as a yellow-brown loam. In larger amounts these additions result in the formation of intergrades to yellow-brown earths or gley soils

    ¹⁴C dating of modern marine and estuarine shellfish

    Get PDF
    We measured the ¹⁴C content of 36 living marine molluscs from Tairua Harbour and the rocky coast on the Coromandel Peninsula of New Zealand. We identified species suitable for radiocarbon dating and show that the open marine intertidal zone is enriched in ¹⁴C compared to the open marine subtidal zone or estuary. We also found a uniform ¹⁴C distribution in the Tairua Harbour, by analyzing samples of the estuarine bivalveAustrovenus stutchburyi collected up to 5 km from the harbor entrance

    Bayesian evaluation of the southern hemisphere radiocarbon offset during the holocene

    Get PDF
    While an interhemispheric offset in atmospheric radiocarbon levels from AD 1950–950 is now well established, its existence earlier in the Holocene is less clear, with some studies reporting globally uniform 14C levels while others finding Southern Hemisphere samples older by a few decades. In this paper, we present a method for wiggle-matching Southern Hemisphere data sets against Northern Hemisphere curves, using the Bayesian calibration program OxCal 4.1 with the Reservoir Offset function accommodating a potential interhemispheric offset. The accuracy and robustness of this approach is confirmed by wiggle-matching known-calendar age sequences of the Southern Hemisphere calibration curve SHCal04 against the Northern Hemisphere curve IntCal04. We also show that 5 of 9 Holocene Southern Hemisphere data sets are capable of yielding reliable offset information. Those data sets that are accurate and precise show that interhemispheric offset levels in the Early Holocene are similar to modern levels, confirming SHCal04 as the curve of choice for calibrating Southern Hemisphere samples

    Is there any Evidence for Regional Atmospheric 14C Offsets in the Southern Hemisphere?

    Get PDF
    Center for Accelerator Mass Spectrometry (CAMS) Tasmanian huon pine (Lagarostrobos franklinii) decadal measurements for the interval AD 745–855 suggest a mean interhemispheric radiocarbon offset (20 ± 5 yr), which is considerably lower than the previously reported mean interhemispheric offset for the last 2 millennia (44 ± 17 yr). However, comparable University of Waikato (Wk) New Zealand kauri (Agathis australis) measurements show significantly higher values (56 ± 6 yr), suggesting the possibility of a temporary geographic (intrahemispheric) offset between Tasmania, Australia, and Northland, New Zealand, during at least 1 common time interval. Here, we report 9 new Wk Tasmanian huon pine measurements from the decades showing the largest huon/kauri difference. We show statistically indistinguishable Wk huon and Wk kauri 14C ages, thus dispelling the suggestion of a 14C geographic offset between Tasmania and Northland

    Ages of 24 widespread tephras erupted since 30,000 years ago in New Zealand, with re-evaluation of the timing and palaeoclimatic implications of the Lateglacial cool episode recorded at Kaipo bog

    Get PDF
    Tephras are important for the NZ-INTIMATE project because they link all three records comprising the composite inter-regional stratotype developed for the New Zealand climate event stratigraphy (NZ-CES). Here we firstly report new calendar ages for 24 widespread marker tephras erupted since 30,000 calendar (cal.) years ago in New Zealand to help facilitate their use as chronostratigraphic dating tools for the NZ-CES and for other palaeoenvironmental and geological applications. The selected tephras comprise 12 rhyolitic tephras from Taupo, nine rhyolitic tephras from Okataina, one peralkaline rhyolitic tephra from Tuhua, and one andesitic tephra each from Tongariro and Egmont/Taranaki volcanic centres. Age models for the tephras were obtained using three methods: (i) 14C-based wiggle-match dating of wood from trees killed by volcanic eruptions (these dates published previously); (ii) flexible depositional modelling of a high-resolution 14C-dated age-depth sequence at Kaipo bog using two Bayesian-based modelling programs, Bacon and OxCal's P_Sequence function, and the IntCal09 data set (with SH offset correction -44 ± 17 yr); and (iii) calibration of 14C ages using OxCal's Tau_Boundary function and the SHCal04 and IntCal09 data sets. Our preferred dates or calibrated ages for the 24 tephras are as follows (youngest to oldest, all mid-point or mean ages of 95% probability ranges): Kaharoa AD 1314 ± 12; Taupo (Unit Y) AD 232 ± 10; Mapara (Unit X) 2059 ± 118 cal. yr BP; Whakaipo (Unit V) 2800 ± 60 cal. yr BP; Waimihia (Unit S) 3401 ± 108 cal. yr BP; Stent (Unit Q) 4322 ± 112 cal. yr BP; Unit K 5111 ± 210 cal. yr BP; Whakatane 5526 ± 145 cal. yr BP; Tuhua 6577 ± 547 cal. yr BP; Mamaku 7940 ± 257 cal. yr BP; Rotoma 9423 ± 120 cal. yr BP; Opepe (Unit E) 9991 ± 160 cal. yr BP; Poronui (Unit C) 11,170 ± 115 cal. yr BP; Karapiti (Unit B) 11,460 ± 172 cal. yr BP; Okupata 11,767 ± 192 cal. yr BP; Konini (bed b) 11,880 ± 183 cal. yr BP; Waiohau 14,009 ± 155 cal. yr BP; Rotorua 15,635 ± 412 cal. yr BP; Rerewhakaaitu 17,496 ± 462 cal. yr BP; Okareka 21,858 ± 290 cal. yr BP; Te Rere 25,171 ± 964 cal. yr BP; Kawakawa/Oruanui 25,358 ± 162 cal. yr BP; Poihipi 28,446 ± 670 cal. yr BP; and Okaia 28,621 ± 1428 cal. yr BP. Secondly, we have re-dated the start and end of the Lateglacial cool episode (climate event NZce-3 in the NZ-CES), previously referred to as the Lateglacial climate reversal, as defined at Kaipo bog in eastern North Island, New Zealand, using both Bacon and OxCal P_Sequence modelling with the IntCal09 data set. The ca 1200-yr-long cool episode, indicated by a lithostratigraphic change in the Kaipo peat sequence to grey mud with lowered carbon content, and a high-resolution pollen-derived cooling signal, began 13,739 ± 125 cal. yr BP and ended 12,550 ± 140 cal. yr BP (mid-point ages of the 95% highest posterior density regions, Bacon modelling). The OxCal modelling, generating almost identical ages, confirmed these ages. The Lateglacial cool episode (ca 13.8-12.6 cal. ka BP) thus overlaps a large part of the entire Antarctic Cold Reversal chronozone (ca 14.1-12.4 cal. ka BP or ca 14.6-12.8 cal. ka BP), and an early part of the Greenland Stadial-1 (Younger Dryas) chronozone (ca 12.9-11.7 cal. ka BP). The timing of the Lateglacial cool episode at Kaipo is broadly consistent with the latitudinal patterns in the Antarctic Cold Reversal signal suggested for the New Zealand archipelago from marine and terrestrial records, and with records from southern South America

    Tephrostratigraphy arid chronology of the kaipo lagoon, an 11, 500 year-old montane peat bog in urewera national Park, New Zealand

    Get PDF
    Eleven well-preserved Holocene tephras occur interbedded with peat in the Kaipo Lagoon bog in Urewera National Park, North Island. They are identified chiefly by their field appearance, stratigraphy, and ferromagnesian mineralogy. Glass shards from one tephra (Hinemaiaia) were analysed by electron microprobe.The tephras originate from the Taupo, Okataina, and Tongariro Volcanic Centres and, from youngest to oldest, are: Kaharoa Ash, Taupo Pumice, Mapara Tephra, Waimihia Lapilli, Hinemaiaia Tephra, Whakatane Ash, Rotoma Ash, Opepe Tephra, Poronui Tephra, Karapiti Tephra, and Okupata Tephra. Thirteen new radiocarbon ages were obtained on six of the tephras (old TY2, years B.P.): Waimihia, 3, 250 ± 70 (Wk498), 2, 910 ± 60 (Wk499), 3, 040 ± 50 (Wk500); Hinemaiaia and Whakatane, 4, 490 ± 60 (Wk496), 4, 530 ± 60 (Wk497); Whakatane, 4, 860 ± 70 (Wk501); Rotoma, 5, 440 ± 170 (Wk493), 7, 380 ± 80 (Wk494), 7, 560 ± 100 (Wk495) (Wk493 -495 are all considered anomalously young); Opepe, 8, 7lO ± 80 (Wk492); Poronui, 10, 160 ± 130 (Wk351), 9, 960 ± 90 (Wk352), 9, 560 ± 80 (Wk491). Estimated ages, assuming constant sedimentation rates, for Karapiti Tephra and Okupata Tephra are 10, 100 and 10, 300 years, respectively. Two peat horizons below the Okupata Tephra were dated at (old TY2) 10, 600 ± 90 years B.P. (Wk263) and 11, 500 ± 80 years B.P. (Wk264) and date the initial growth of the Kaipo Lagoon bog. Peat accumulation rates have been slow (average 0.19 mm/year) but variable.The identification and dating of the tephras at Kaipo extends their known distribution in eastern North Island, and improves their potential usefulness as isochronous stratigraphic marker units

    Robust radiocarbon dating of wood samples by high-sensitivity liquid scintillation spectroscopy in the 50–70 kyr age range

    Get PDF
    Although high-sensitivity liquid scintillation (LS) spectroscopy is theoretically capable of producing finite radiocarbon ages in the 50,000- to 70,000-yr range, there is little evidence in the literature that meaningful dates in this time period have been obtained. The pressing need to undertake calibration beyond 26 kyr has resulted in the regular publication of ¹⁴C results in excess of 50 kyr, yet very little effort has been made to demonstrate their accuracy or precision. There is a paucity of systematic studies of the techniques required to produce reliable dates close to background and the methods needed to assess contamination from either in situ sources or laboratory handling and processing. We have studied the requirements for producing accurate and reliable dates beyond 50 kyr. Laboratory procedures include optimization of LS spectrometers to obtain low and stable non-¹⁴C background count rates, use of low-background counting vials, large benzene volumes, long counting times, and preconditioning of vacuum lines. We also discuss the need for multiple analyses of a suitable material containing no original ¹⁴C (background blank) and the application of an appropriate statistical model to compensate for variability in background contamination beyond counting statistics. Accurate and reproducible finite ages >60 kyr are indeed possible by high-sensitivity LS spectroscopy, but require corroborating background blank data to be defensible
    corecore